IXO Science Panel

Solar System, Planet Formation & Evolution

Aug 2008 report

Eric Feigelson (Penn State, Chair)
Ronald Elsner (NASA/MSFC)
Alfred Glassgold (UC Berkeley)
Manuel Guedel (ETH/PSI)
Thierry Montmerle (Grenoble)
Bradford Wargelin (H-S CfA)
Scott Wolk (H-S CfA)
Randall Smith (NASA/GSFC, Coordinator)

IXO Science Panel Solar System, Planet Formation & Evolution

Key question #1:

How do X-rays influence planet formation in protoplanetary disks?

X-rays from powerful magnetic reconnection flares are ubiquitous in pre-main sequence stars during the epoch of planet formation. If these stellar X-rays efficiently irradiate the protoplanetary disk, many effects on disk physics are expected (e.g., ionization-induced turbulence). Penetrating hard X-rays may regulate the `dead zone' where dust settles to the midplane.

QuickTime™ and a decompressor are needed to see this picture.

The fluorescent Fe 6.4 keV has been marginally detected in a few pre-main sequence systems. Con-X can measure the line in hundreds of nearby protostars and T Tauri st with disks well-characterized in the infrared/submm band

For a few bright X-ray flares, disk structure can be elucidated by reverberation mapping. This will reveal t disk structure as seen from the X-ray emitting loop on scales of ~2-100 AU.

Examples of pre-main sequence X-ray lightcurves

XMM DROXO, 9 days Giardino et al. 2007

Chandra YLW 16A superflare, 1.2 days Imanishi et al. 2001

Theoretical calculations of pre-main sequence magnetospheres

Open accreting field lines

Closed field loops

X-ray emission

QuickTime™ and a decompressor are needed to see this picture.

Jardine et al. 2006

Examples of magnetic accretion funnels

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor leeded to see this picture.

Models of X-ray flare decays indicate that some arise from loops 5-20 stellar radii in size. These could efficiently illuminate the disk.

Favata et al. 2005, Getman et al. 2008

Long et al. 2007, Romanova et al. 2008

Iron fluorescent line

Cold disk reflects flare X-rays

COUP spectra

Tsujimoto et al. 2005

YLW 16A: protostar in Oph

X-ray ionization of the gaseous disk

PREDICTION

QuickTime[™] and a decompressor are needed to see this picture.

X-rays heat & ionize outer layers of disk. $J_{1/2} \rightarrow J_{3/2}$ [NeII] 12.81 µm line predicted to be observable from 1-10 AU

Glassgold et al. 2007. Also Meijerink et al. 2008, Gorti & Hollenbach 2008, Ercolano et al. 2008

DETECTION

Spitzer FEPS Legacy reports [Ne II] line in 4 X-ray bright T Tauri stars

Pascucci et al. 2007. Also Lahuis et al. 2007, Espaillat et al. 2007, Herczeg et al. 2007

Plausible X-ray/flare effects on protoplanetary disks

- PMS X-ray ionization will heat gas and change (organic) chemistry in disk outer layers
- PMS X-rays may be an important ionization source at the base of bipolar outflows
- X-ray ionization is likely to induce MRI turbulence affecting accretion, dust coagulation, migration, gaps
- Flare MeV protons may have produced some short-lived radio nuclides in meteoritic CAIs by spallation (¹ºBe, ²¹Ne, ⁴¹Ca, ...)
- Flare X-rays may have melted CAIs close to star and/or melted chondrules at Asteroid Belt

(These issues are discussed in dozens of studies)

What can IXO learn about protoplanetary disks in 1 Ms?

A survey of the nearby Ophiuchus, Taurus, Perseus and Orion star forming clouds, IXO can detect fluorescent 6.4 keV in ~200 pre-main sequence stars. Their dust+gas disk properties would already be well-characterized by Spitzer, Herschel, JWST and ALMA. IXO would establish the importance of X-ray irradiation of disk physics & chemistry.

In a long exposure of the Ophiuchus cloud core (including YLW 16A), IXO is likely to detect several superflares with rise/fall in hours.

IXO Science Panel Solar System, Planet Formation & Evolution

Key question #2: How does charge-exchange work in planetary atmospheres?

Soft X-ray emission from the interaction of solar wind and X-rays with neutral planetary atmospheres has been detected in comets and from the outer atmospheres of Venus, Mars, Jupiter & Saturn. The physical processes are still poorly understood because of inadequate signal and spectral resolution of current telescopes. Many charge-exchange lines are expected in the 0.3-1 keV band.

IXO will discriminate fluorescent and charge-exchange processes, produce movies of the Jovian aurorae, and map the unexpected Martian exosphere. Together with charge-exchange studies of comets, IXO will provide unique insights into the outer atmospheres of Solar System bodies and their interaction with solar phenomena.

Jovian X-ray emission

Several spectral components with distinct spatial & temporal behaviors:

- 1. Soft charge-exchange lines of heavy solar wind ions (O, S, C)
- 2. Hard electron bremsstrahlung from solar wind particles
- 3. Scattering and fluorescence of hard and soft solar X-rays

QuickTime™ and a decompressor are needed to see this picture.

Chandra spectra of aurorae with soft & hard components

Branduardi-Raymont et al. 2008

QuickTime™ and a decompressor are needed to see this picture.

Simulation of a 50 ks IXO spectrum based on the XMM emission model showing a few of the expected charge-exchange lines

XMM grating
Spectra
highlighting
O charge
exchange lines

Branduardi-Raymont et al. 2007

X-rays from Mars

The expected fluorescence of solar X-rays from inner Martian atmosphere

The unexpected charge exchange emission from an exosphere at 2-8 radii.

QuickTime™ and a decompressor are needed to see this picture.

Photoevaporation of the Martian atmosphere by solar UV/X-rays?

Chandra, Dennerl 2002

XMM, Dennerl et al. 2007

IXO SSPFE program

- 1. X-ray fluorescence in protoplanetary disks (0.4 Ms snapshot survey of Taurus, Perseus & Orion Clouds for X-ray irradiation effects; 0.5 Ms continuous exposure of Ophiuchus for reverberation mapping)
- 2. Charge-exchange physics in outer atmospheres of Jupiter (3 visits totaling 0.5 Ms) and Mars (3 visits totaling 0.3 Ms)
- 3. Comet studies (0.4 Ms), heliospheric emission (0.0 Ms, parasitic), evaporation of extrasolar planetary atmospheres (0.4 Ms)

Total program: 2.5 Ms